Wilderness areas offer important ecological and social benefits and there are urgent reasons to discover where their positive characteristics and ecological functions are present and able to flourish. We apply a novel explainable machine learning technique to satellite images which show wild and anthropogenic areas in Fennoscandia. Occluding certain activations in an interpretable artificial neural network we complete a comprehensive sensitivity analysis regarding wild and anthropogenic characteristics. This enables us to predict detailed and high-resolution sensitivity maps highlighting these characteristics. Our artificial neural network provides an interpretable activation space increasing confidence in our method. Within the activation space, regions are semantically arranged. Our approach advances explainable machine learning for remote sensing, offers opportunities for comprehensive analyses of existing wilderness, and has practical relevance for conservation efforts.
翻译:野生地区具有重要的生态和社会利益,有迫切理由发现其积极特征和生态功能的存在和繁荣。我们对显示Fennoscandia野外和人类活动的地区的卫星图像采用新颖的机器学习技术。在可解释的人工神经网络中进行某些激活,我们完成了关于野生和人类活动特征的全面敏感性分析。这使我们能够预测突出这些特征的详细和高分辨率的敏感地图。我们的人工神经网络提供了可解释的激活空间,增强了对我们方法的信心。在激活空间中,各区域是自觉安排的。我们的方法推进了遥感的可解释机器学习,为全面分析现有荒野提供了机会,对保护工作具有实际意义。