Shapley values are today extensively used as a model-agnostic explanation framework to explain complex predictive machine learning models. Shapley values have desirable theoretical properties and a sound mathematical foundation. Precise Shapley value estimates for dependent data rely on accurate modeling of the dependencies between all feature combinations. In this paper, we use a variational autoencoder with arbitrary conditioning (VAEAC) to model all feature dependencies simultaneously. We demonstrate through comprehensive simulation studies that VAEAC outperforms the state-of-the-art methods for a wide range of settings for both continuous and mixed dependent features. Finally, we apply VAEAC to the Abalone data set from the UCI Machine Learning Repository.
翻译:光谱值如今被广泛用作解释复杂预测机器学习模型的模型-不可知解释框架。光谱值具有理想的理论属性和健全的数学基础。光谱值对依赖数据的精确估计依赖于所有特征组合之间依赖性的准确模型。在本文中,我们使用一个具有任意调节功能的变式自动编码器(VAEAC)同时模拟所有特征依赖性。我们通过综合模拟研究来证明,光谱仪在连续和混合依赖性特征的多种环境中都优于最先进的方法。最后,我们将光谱光谱值应用到从 UCI 机器学习存储库收集的Abone 数据中。