Controlling the parameters' norm often yields good generalisation when training neural networks. Beyond simple intuitions, the relation between parameters' norm and obtained estimators theoretically remains misunderstood. For one hidden ReLU layer networks with unidimensional data, this work shows the minimal parameters' norm required to represent a function is given by the total variation of its second derivative, weighted by a $\sqrt{1+x^2}$ factor. As a comparison, this $\sqrt{1+x^2}$ weighting disappears when the norm of the bias terms are ignored. This additional weighting is of crucial importance, since it is shown in this work to enforce uniqueness and sparsity (in number of kinks) of the minimal norm interpolator. On the other hand, omitting the bias' norm allows for non-sparse solutions. Penalising the bias terms in the regularisation, either explicitly or implicitly, thus leads to sparse estimators. This sparsity might take part in the good generalisation of neural networks that is empirically observed.


翻译:在培训神经网络时, 控制参数的规范通常能产生良好的概括化。 除了简单的直觉外, 参数的规范与获得的测算符之间的关系在理论上仍然被误解。 对于一个带有单维数据的隐藏 ReLU 层网络来说, 这项工作显示了代表函数所需的最小参数的规范是其第二个衍生物的总变异所给出的, 加权值为$sqrt{1+x%2} 系数。 相比之下, 当偏差条件的规范被忽略时, 这个 $\sqrt{ 1+x%2} 加权值就会消失。 这种额外加权值至关重要, 因为在这项工作中显示要执行最小规范内插器的独一和宽度( 离子数 ) 。 另一方面, 忽略偏差的规范允许非扭曲的解决方案 。 将常规化中的偏差条件( 明示或隐含地), 导致稀薄的估测值。 这种偏度可能会在实验所观察到的神经网络的良好概括化中产生部分的重要性 。</s>

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
专知会员服务
159+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员