The adversarial attack literature contains a myriad of algorithms for crafting perturbations which yield pathological behavior in neural networks. In many cases, multiple algorithms target the same tasks and even enforce the same constraints. In this work, we show that different attack algorithms produce adversarial examples which are distinct not only in their effectiveness but also in how they qualitatively affect their victims. We begin by demonstrating that one can determine the attack algorithm that crafted an adversarial example. Then, we leverage recent advances in parameter-space saliency maps to show, both visually and quantitatively, that adversarial attack algorithms differ in which parts of the network and image they target. Our findings suggest that prospective adversarial attacks should be compared not only via their success rates at fooling models but also via deeper downstream effects they have on victims.


翻译:对抗性攻击文献包含大量用于制造干扰的算法,这些算法在神经网络中产生病理行为。在许多情况下,多重算法针对的是相同的任务,甚至执行同样的限制。在这项工作中,我们显示不同的攻击性算法产生了不同的对抗性例子,这些例子不仅在效力上不同,而且在质量上对受害者的影响上也不同。我们首先证明,人们可以确定一个对抗性例子所形成的攻击性算法。然后,我们利用参数空间特征图的最新进展,从视觉上和数量上表明,对抗性攻击算法在网络的哪些部分和图像上都不同。我们的调查结果表明,未来的对抗性攻击不仅应该通过欺骗模型的成功率来比较,而且还应该通过对受害者的更深的下游影响来比较。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
12+阅读 · 2020年12月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Adversarial Metric Attack for Person Re-identification
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员