In recent work, comonads and associated structures have been used to analyse a range of important notions in finite model theory, descriptive complexity and combinatorics. We extend this analysis to Hybrid logic, a widely-studied extension of basic modal logic, which corresponds to the bounded fragment of first-order logic. In addition to characterising the various resource-indexed equivalences induced by Hybrid logic and the bounded fragment, and the associated combinatorial decompositions of structures, we also give model-theoretic characterisations of bounded formulas in terms of invariance under generated substructures, in both the finite and infinite cases.
翻译:在最近的工作中,共和体和相关结构被用来分析有限模型理论、描述复杂性和组合法中的一系列重要概念。我们将这一分析扩大到混合逻辑,这是经过广泛研究的基本模式逻辑的延伸,与一阶逻辑的捆绑部分相对应。除了说明混合逻辑和捆绑的碎片引起的各种资源指数等同以及相关的组合结构分解外,我们还在有限和无限的情况下,从生成的亚结构中的变异性的角度,对受约束的公式进行模型理论定性。