We study various formulations of the completeness of first-order logic phrased in constructive type theory and mechanised in the Coq proof assistant. Specifically, we examine the completeness of variants of classical and intuitionistic natural deduction and sequent calculi with respect to model-theoretic, algebraic, and game-theoretic semantics. As completeness with respect to the standard model-theoretic semantics \`a la Tarski and Kripke is not readily constructive, we analyse connections of completeness theorems to Markov's Principle and Weak K\"onig's Lemma and discuss non-standard semantics admitting assumption-free completeness. We contribute a reusable Coq library for first-order logic containing all results covered in this paper.
翻译:我们研究了以建设性类型理论和Coq验证助理机械化的一阶逻辑的完整性的各种表述,具体地说,我们研究了古典和直觉自然扣减和序列计算等变体在模型理论、代数和游戏理论语义语义学方面的完整性,由于标准模型理论语义语义学的完整性不是极具建设性,我们分析了完整性理论与Markov的原理和Weak K\“onig's Lemma”之间的联系,并讨论了非标准语义学承认无假设完整性的问题,我们为包含本文所包括的所有结果的第一阶逻辑提供了可重复使用的 Coq 图书馆。