Neural networks are essential components of learning-based software systems. However, their high compute, memory, and power requirements make using them in low resources domains challenging. For this reason, neural networks are often quantized before deployment. Existing quantization techniques tend to degrade the network accuracy. We propose Counter-Example Guided Neural Network Quantization Refinement (CEG4N). This technique combines search-based quantization and equivalence verification: the former minimizes the computational requirements, while the latter guarantees that the network's output does not change after quantization. We evaluate CEG4N~on a diverse set of benchmarks, including large and small networks. Our technique successfully quantizes the networks in our evaluation while producing models with up to 72% better accuracy than state-of-the-art techniques.
翻译:神经网络是基于学习的软件系统的基本组成部分。 但是,它们高的计算、内存和动力要求使得在低资源领域使用这些网络具有挑战性。 因此,神经网络在部署之前往往被量化。 现有的量化技术往往会降低网络的准确性。 我们提出反外向神经网络量化精炼(CEG4N) 。 这一技术将基于搜索的量化和等值核查结合起来:前者最大限度地减少了计算要求,而后者则保证网络的产出在量化后不会改变。 我们根据一套不同的基准,包括大小网络,对神经网络进行了评估。 我们的技术成功地量化了我们评估中的网络,同时制作了比最新技术精准72%的模型。