An emerging trend on social media platforms is their use as safe spaces for peer support. Particularly in healthcare, where many medical conditions contain harsh stigmas, social media has become a stigma-free way to engage in dialogues regarding symptoms, treatments, and personal experiences. Many existing works have employed NLP algorithms to facilitate quantitative analysis of health trends. Notably absent from existing works are keyphrase extraction (KE) models for social health posts-a task crucial to discovering emerging public health trends. This paper presents a novel, theme-driven KE dataset, SuboxoPhrase, and a qualitative annotation scheme with an overarching goal of extracting targeted clinically-relevant keyphrases. To the best of our knowledge, this is the first study to design a KE schema for social media healthcare texts. To demonstrate the value of this approach, this study analyzes Reddit posts regarding medications for opioid use disorder, a paramount health concern worldwide. Additionally, we benchmark ten off-the-shelf KE models on our new dataset, demonstrating the unique extraction challenges in modeling user-generated health texts. The proposed theme-driven KE approach lays the foundation of future work on efficient, large-scale analysis of social health texts, allowing researchers to surface useful public health trends, patterns, and knowledge gaps.


翻译:社会媒体平台的新趋势是将社会媒体平台用作同伴支持的安全空间。 特别是在医疗保健领域,许多医疗条件含有严厉的污名,社交媒体已成为参与有关症状、治疗和个人经验的对话的无污名方式。许多现有作品都采用了NLP算法,以便利对健康趋势进行定量分析。值得注意的是,现有作品中没有社会卫生日志的关键词提取(KE)模型,这是发现新出现的公共卫生趋势的关键任务。本文将10个现成的KE模型以我们新的数据集为基准,展示了用户生成的卫生文本模型中独特的提取挑战。根据我们的知识,这是为社会媒体保健文本设计KE Schema的第一个研究。为了展示这一方法的价值,本研究分析了有关类阿片使用紊乱症药物的重新应用站点,这是全世界最大的卫生问题。此外,我们把10个现成的KE模型作为基准,展示了用户生成的卫生文本模型中独特的提取挑战。拟议的主题驱动的KE方法,为大规模卫生研究者的未来健康趋势提供了高效的地面分析基础。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月18日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员