Recently, social media platforms are heavily moderated to prevent the spread of online hate speech, which is usually fertile in toxic words and is directed toward an individual or a community. Owing to such heavy moderation, newer and more subtle techniques are being deployed. One of the most striking among these is fear speech. Fear speech, as the name suggests, attempts to incite fear about a target community. Although subtle, it might be highly effective, often pushing communities toward a physical conflict. Therefore, understanding their prevalence in social media is of paramount importance. This article presents a large-scale study to understand the prevalence of 400K fear speech and over 700K hate speech posts collected from Gab.com. Remarkably, users posting a large number of fear speech accrue more followers and occupy more central positions in social networks than users posting a large number of hate speech. They can also reach out to benign users more effectively than hate speech users through replies, reposts, and mentions. This connects to the fact that, unlike hate speech, fear speech has almost zero toxic content, making it look plausible. Moreover, while fear speech topics mostly portray a community as a perpetrator using a (fake) chain of argumentation, hate speech topics hurl direct multitarget insults, thus pointing to why general users could be more gullible to fear speech. Our findings transcend even to other platforms (Twitter and Facebook) and thus necessitate using sophisticated moderation policies and mass awareness to combat fear speech.


翻译:最近,社交媒体平台严格审查以防止在线仇恨言论的传播,这些言论通常充满有毒词语,针对个人或社群。由于这种严格审查,新的和更微妙的技术正在被部署。其中最引人注目的是恐惧言论。恐惧言论,顾名思义,试图激发对目标社群的恐惧。尽管微妙,它可能非常有效,经常将社群推向身体冲突。因此,了解社交媒体中它们的普遍性至关重要。本文提出了一项大规模研究,以了解从Gab.com收集的400K恐惧言论和70多万仇恨言论帖子的普遍性。值得注意的是,发布大量恐惧言论的用户比发布大量仇恨言论的用户更容易获得更多的关注者并占据更为中心的社交网络位置。他们还可以通过回复、转发和提到更有效地接触良性用户,而不是仇恨言论用户。这与事实相连,即与仇恨言论不同,恐惧言论几乎没有有毒内容,使其看起来可信。此外,虽然恐惧言论主题大多描绘社区作为一个加害者,使用(虚假的)推理链,但仇恨言论主题则直接投射出多目标侮辱。这也解释了为什么普通用户可能更容易受恐惧言论影响。我们的发现甚至超越了其他平台(Twitter和Facebook),因此需要使用复杂的审查政策和大众意识来打击恐惧言论。

0
下载
关闭预览

相关内容

【2020新书】社交媒体挖掘,212pdf,Mining Social Media
专知会员服务
60+阅读 · 2020年7月30日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月9日
Arxiv
0+阅读 · 2023年5月8日
Arxiv
22+阅读 · 2022年3月31日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员