An emerging alternative to conventional Augmented Reality (AR) glasses designs, Beaming displays promise slim AR glasses free from challenging design trade-offs, including battery-related limits or computational budget-related issues. These beaming displays remove active components such as batteries and electronics from AR glasses and move them to a projector that projects images to a user from a distance (1-2 meters), where users wear only passive optical eyepieces. However, earlier implementations of these displays delivered poor resolutions (7 cycles per degree) without any optical focus cues and were introduced with a bulky form-factor eyepiece (50 mm thick). This paper introduces a new milestone for beaming displays, which we call HoloBeam. In this new design, a custom holographic projector populates a micro-volume located at some distance (1-2 meters) with multiple planes of images. Users view magnified copies of these images from this small volume with the help of an eyepiece that is either a Holographic Optical Element (HOE) or a set of lenses. Our HoloBeam prototypes demonstrate the thinnest AR glasses to date with a submillimeter thickness (e.g., HOE film is only 120 um thick). In addition, HoloBeam prototypes demonstrate near retinal resolutions (24 cycles per degree) with a 70 degrees-wide field of view.


翻译:在常规增强现实(AR)镜像设计中, Beaming 显示显示显示的缩略镜没有具有挑战性的设计取舍,包括电池相关限制或计算预算相关问题。这些光束显示从AR镜中去除电池和电子设备等活性部件,将其移动到投影机,从远处将图像投射给用户(1-2米),用户只戴被动光学眼镜。然而,这些显示的早期应用显示显示的分辨率(每个度7个周期)差,没有任何光学焦点提示,并且以一个大成形成形的成形玻璃(50毫米厚)引入。本文为显示显示显示显示的新里程碑,我们称之为HoloBeam。在这个新设计中,一个定制的全色投影仪投影仪投影机用多面(1-2米),将图像投影到某个距离(1-2米)的微量投影机。用户查看这些图像从这个小体的放大版的复制件,用一个全色光学透视镜显示元素(HOEE)或一组透视镜显示器(50毫米厚厚) 。我们的Holobe原型原型原型模型展示了近额的图像。

0
下载
关闭预览

相关内容

增强现实(Augmented Reality,简称 AR),是一种实时地计算摄影机影像的位置及角度并加上相应图像的技术,这种技术的目标是在屏幕上把虚拟世界套在现实世界并进行互动。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
16+阅读 · 2022年11月21日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员