The book develops the fundamental ideas of the famous Kac-Rice formula for vectorvalued random fields. This formula allows to compute the expectation and moments of the measure, and integrals with respect to this measure, of the sets of levels of such fields. After a presentation of the historical context of the Kac-Rice formula, we give an elementary demonstration of the co-area formula. This formula replaces the change of variable formula in multiple integrals and a direct application of this formula gives the Kac-Rice formula for almost all levels. We emphasize the necessity of having the formula for all levels, because for some applications one needs, for example, the formula for level zero.
翻译:这本书为矢量值随机字段开发了著名的 Kac- Rice 公式的基本理念。 这个公式允许计算该计量的预期和时间, 以及该计量的集成。 在演示了 Kac- Rice 公式的历史背景之后, 我们基本演示了共同区域公式。 这个公式取代了多个组合中的变量公式变化, 并直接应用了这个公式, 使 Kac- Rice 公式几乎可以覆盖所有级别。 我们强调所有级别都拥有该公式的必要性, 因为对于某些应用来说, 需要一种公式, 比如, 零级的公式 。