Large-scale graph data in the real-world are often dynamic rather than static. The data are changing with new nodes, edges, and even classes appearing over time, such as in citation networks and research-and-development collaboration networks. Graph neural networks (GNNs) have emerged as the standard method for numerous tasks on graph-structured data. In this work, we employ a two-step procedure to explore how GNNs can be incrementally adapted to new unseen graph data. First, we analyze the verge between transductive and inductive learning on standard benchmark datasets. After inductive pretraining, we add unlabeled data to the graph and show that the models are stable. Then, we explore the case of continually adding more and more labeled data, while considering cases, where not all past instances are annotated with class labels. Furthermore, we introduce new classes while the graph evolves and explore methods that automatically detect instances from previously unseen classes. In order to deal with evolving graphs in a principled way, we propose a lifelong learning framework for graph data along with an evaluation protocol. In this framework, we evaluate representative GNN architectures. We observe that implicit knowledge within model parameters becomes more important when explicit knowledge, i.e., data from past tasks, is limited. We find that in open-world node classification, the data from surprisingly few past tasks are sufficient to reach the performance reached by remembering data from all past tasks. In the challenging task of unseen class detection, we find that using a weighted cross-entropy loss is important for stability.


翻译:真实世界中的大型图形数据往往是动态的,而不是静止的。 数据随着新的节点、 边缘, 甚至随着时间的变化而变化, 比如在引用网络和研发合作网络中出现, 图表神经网络( GNNS) 已经成为图表结构数据中许多任务的标准方法。 在这项工作中, 我们使用一个两步程序来探索GNNS如何逐步适应新的隐形图形数据。 首先, 我们分析标准基准数据集的传输和感知学习之间的边缘。 在入门前训练后, 我们在图表中添加未标记的数据, 并显示模型是稳定的。 然后, 我们探索继续增加越来越多的标签数据, 同时考虑到案例, 并不是所有过去的例子都附有类标签。 此外, 我们引入新的分类, 在图表进门时, 并探索自动检测从前看不见的类别中发生的情况的方法。 为了以有原则的方式处理不断演变的图表, 我们建议用一个终身学习的框架来与评估协议一起绘制图表的数据。 在这个框架中, 我们评估代表的GNNNN的参数变得不够稳定, 我们用一个隐含的参数来观察过去的数据。 我们用一个非常重要的任务, 当我们从一个清晰的过去的数据分类中发现, 我们从一个明白的层次中, 我们从一个明白的层次中发现一个到达了。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2022年2月22日
Arxiv
3+阅读 · 2018年4月10日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员