Nowadays, due to the widespread use of smartphones in everyday life and the improvement of computational capabilities of these devices, many complex tasks can now be deployed on them. Concerning the need for continuous monitoring of vital signs, especially for the elderly or those with certain types of diseases, the development of algorithms that can estimate vital signs using smartphones has attracted researchers worldwide. Such algorithms estimate vital signs (heart rate and oxygen saturation level) by processing an input PPG signal. These methods often apply multiple pre-processing steps to the input signal before the prediction step. This can increase the computational complexity of these methods, meaning only a limited number of mobile devices can run them. Furthermore, multiple pre-processing steps also require the design of a couple of hand-crafted stages to obtain an optimal result. This research proposes a novel end-to-end solution to mobile-based vital sign estimation by deep learning. The proposed method does not require any pre-processing. Due to the use of fully convolutional architecture, the parameter count of our proposed model is, on average, a quarter of the ordinary architectures that use fully-connected layers as the prediction heads. As a result, the proposed model has less over-fitting chance and computational complexity. A public dataset for vital sign estimation, including 62 videos collected from 35 men and 27 women, is also provided. The experimental results demonstrate state-of-the-art estimation accuracy.
翻译:目前,由于在日常生活中广泛使用智能手机并改进了这些装置的计算能力,现在可以对这些装置进行许多复杂的任务。关于需要不断监测生命迹象,特别是老年人或某些类型疾病患者的生命迹象,开发能够使用智能手机估计生命迹象的算法已经吸引了全世界的研究人员。这种算法通过处理输入的 PPG 信号来估计生命迹象(心率和氧饱和水平),这些方法往往在预测步骤之前对输入信号采用多个预处理步骤。这可以增加这些方法的计算复杂性,意味着只有数量有限的移动装置可以运行这些方法。此外,多个预处理步骤还需要设计几个手制阶段,以获得最佳结果。这项研究提出了通过深思熟虑来计算移动生命迹象的新式端对端解决方案。拟议方法不需要预处理。由于使用了完全进化的结构,我们拟议模型的参数计数平均占使用完全连接的层进行预测的正常结构的四分之一,这意味着只有有限的移动装置。此外,多个预处理步骤还需要设计几个手制阶段,以获得最佳结果。 这项研究提出了一个新的端对移动男子进行精确的模型, 并且提供了27号的计算结果。 也提供了一个机会, 做了一个关键的模型, 做了一个模拟的模型, 做了一个模拟的计算结果。 并且提供了27号的模型的计算。 并且提供了一个模拟的模型, 并且提供了一个模拟的模型的模型的模型的模型的模型的模型, 提供了一个测试。