The convex hull cheapest insertion heuristic is known to produce good solutions to the Traveling Salesperson Problem in Euclidean spaces, but it has not been extended to the non-Euclidean case. The proposed adaptation uses multidimensional scaling to first project the points into a Euclidean space, thereby enabling the generation of the convex hull that initializes the algorithm. To evaluate the proposed algorithm, non-Euclidean spaces are created by adding impassable separators to the TSPLIB benchmark data-set, or by using the L1 norm as a metric. This adapted heuristic is demonstrated to outperform the commonly used Nearest Neighbor heuristic and Nearest Insertion heuristic in 89% and 99% of the cases studied, respectively. When the genetic algorithm and ant colony optimization algorithms are provided 1 minute of computation time, the proposed heuristic tour costs are lower than the mean metaheuristic solutions found in 87% and 95% of the instances, respectively.
翻译:暂无翻译