Let $\mathbb{F}_{q}$ be the finite field with $q$ elements. This paper mainly researches the polynomial representation of double cyclic codes over $\mathbb{F}_{q}+v\mathbb{F}_{q}+v^2\mathbb{F}_{q}$ with $v^3=v$. Firstly, we give the generating polynomials of these double cyclic codes. Secondly, we show the generating matrices of them. Meanwhile, we get quantitative information related to them by the matrix forms. Finally, we investigate the relationship between the generators of double cyclic codes and their duals.


翻译:让$mathbb{F ⁇ q}$( $mathbb{ F ⁇ q ⁇ v\mathb{ F ⁇ q ⁇ 2\mathb{F ⁇ q}$( $v{ 3= v$) F ⁇ q}( $) 成为有 q美元 元素的有限字段。 本文主要研究双环码的多元表示法, 超过 $\ mathbb{ F ⁇ q ⁇ v\ mathb{ F ⁇ q}$( $v ⁇ 3= v} F ⁇ 2\ q}$( 美元) 。 首先, 我们给出了这些双环码的生成多边表示法。 第二, 我们展示了它们的生成矩阵。 同时, 我们通过矩阵表格获得与它们相关的定量信息。 最后, 我们调查了双环码生成者与它们的双重编码之间的关系 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
简明扼要!Python教程手册,206页pdf
专知会员服务
47+阅读 · 2020年3月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
4+阅读 · 2017年7月7日
Music Transformer
Arxiv
5+阅读 · 2018年12月12日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
Arxiv
6+阅读 · 2018年3月12日
Arxiv
6+阅读 · 2018年1月29日
Arxiv
3+阅读 · 2017年7月6日
VIP会员
相关主题
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
简明扼要!Python教程手册,206页pdf
专知会员服务
47+阅读 · 2020年3月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
4+阅读 · 2017年7月7日
Top
微信扫码咨询专知VIP会员