We establish a classical heuristic algorithm for exactly computing quantum probability amplitudes. Our algorithm is based on mapping output probability amplitudes of quantum circuits to evaluations of the Tutte polynomial of graphic matroids. The algorithm evaluates the Tutte polynomial recursively using the deletion-contraction property while attempting to exploit structural properties of the matroid. We consider several variations of our algorithm and present experimental results comparing their performance on two classes of random quantum circuits. Further, we obtain an explicit form for Clifford circuit amplitudes in terms of matroid invariants and an alternative efficient classical algorithm for computing the output probability amplitudes of Clifford circuits.
翻译:我们为精确计算量子概率振幅建立了一个古典的超自然算法。 我们的算法基于对量子电路输出概率振幅的绘图,以评价图形机器人图尔特多数值。 算法利用删除- 合同属性对图尔特多数值递归性进行评估, 同时试图利用该机器人的结构特性。 我们考虑了我们的算法的几种变异, 并提出了实验结果, 比较其在两类随机量子电路上的性能。 此外, 我们获得了克里夫德电路振幅的清晰形式, 包括类固醇变异剂, 以及计算克里夫德电路输出概率振幅的替代有效古典算法 。