The Quantum Singular Value Transformation (QSVT) is a recent technique that gives a unified framework to describe most quantum algorithms discovered so far, and may lead to the development of novel quantum algorithms. In this paper we investigate the hardness of classically simulating the QSVT. A recent result by Chia, Gily\'en, Li, Lin, Tang and Wang (STOC 2020) showed that the QSVT can be efficiently "dequantized" for low-rank matrices, and discussed its implication to quantum machine learning. In this work, motivated by establishing the superiority of quantum algorithms for quantum chemistry and making progress on the quantum PCP conjecture, we focus on the other main class of matrices considered in applications of the QSVT, sparse matrices. We first show how to efficiently "dequantize", with arbitrarily small constant precision, the QSVT associated with a low-degree polynomial. We apply this technique to design classical algorithms that estimate, with constant precision, the singular values of a sparse matrix. We show in particular that a central computational problem considered by quantum algorithms for quantum chemistry (estimating the ground state energy of a local Hamiltonian when given, as an additional input, a state sufficiently close to the ground state) can be solved efficiently with constant precision on a classical computer. As a complementary result, we prove that with inverse-polynomial precision, the same problem becomes BQP-complete. This gives theoretical evidence for the superiority of quantum algorithms for chemistry, and strongly suggests that said superiority stems from the improved precision achievable in the quantum setting. We also discuss how this dequantization technique may help make progress on the central quantum PCP conjecture.


翻译:Quantum Singular 值变换(QSVT)是最近的一种技术,它为描述迄今为止发现的大多数量子算法提供了统一框架,并可能导致新量子算法的发展。 在本文中,我们研究了古典模拟QSVT的硬性。 Chia, Gily\'en, Li, Li, Lin, Tang和Wang(STOC 2020)的最新结果显示, QSVT 能够有效地“ 量化” 用于低级矩阵, 并讨论了它对于量子机器学习的影响。 在这项工作中, 建立量子化学量算法的优势, 并在量子化学的精确度上取得进展。 我们特别显示, 在QSVT的应用程序中, 量子级算法的优劣性是另一个主要基数。 我们首先展示如何有效地“ 裁分分分化 ”, QSVT 与低度的多元度相关。 我们运用这种技术来设计古典算法, 以不断的精确度来估计, 一个稀薄矩阵的奇数值。 我们用这个方法, 我们特别显示, 当一个中央计算法的精度的精度的精度, 当一个核心的精度变的精度, 当量的精度的精度, 当一个核心的精度的量计算法 使得一个稳定的计算法 的量法 能够使一个精确度的量法成为一个精确的精确的量法, 当一个精确度的精确的量法, 当一个精确的精确的量法, 当量法 成为一个精确的精确度的精确度的精确的精确的精确的精确的精确度, 。

0
下载
关闭预览

相关内容

【WSDM2021】拓扑去噪的鲁棒图神经网络
专知会员服务
26+阅读 · 2020年11月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
【泡泡一分钟】无参相机标定
泡泡机器人SLAM
3+阅读 · 2018年11月7日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月19日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
【泡泡一分钟】无参相机标定
泡泡机器人SLAM
3+阅读 · 2018年11月7日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员