Subgraph counting is fundamental for analyzing connection patterns or clustering tendencies in graph data. Recent studies have applied LDP (Local Differential Privacy) to subgraph counting to protect user privacy even against a data collector in both centralized and decentralized social networks. However, existing local algorithms suffer from extremely large estimation errors or assume multi-round interaction between users and the data collector, which requires a lot of user effort and synchronization. In this paper, we focus on a one-round of interaction and propose accurate subgraph counting algorithms by introducing a recently studied shuffle model. We first propose a basic technique called wedge shuffling to send wedge information, the main component of several subgraphs, with small noise. Then we apply our wedge shuffling to counting triangles and 4-cycles -- basic subgraphs for analyzing clustering tendencies -- with several additional techniques. We also show upper bounds on the estimation error for each algorithm. We show through comprehensive experiments that our one-round shuffle algorithms significantly outperform the one-round local algorithms in terms of accuracy and achieve small estimation errors with a reasonable privacy budget, e.g., smaller than 1 in edge DP.


翻译:子计数对于分析图形数据中的连接模式或群集趋势至关重要。 最近的研究应用LDP( 本地差异隐私) 进行子计, 以保护用户隐私, 即使是针对中央和分散社交网络中的数据收集器。 然而, 现有的本地算法存在巨大的估计错误, 或者在用户和数据收集器之间承担多轮互动, 这需要大量的用户努力和同步。 在本文中, 我们侧重于一回合的互动, 并通过引入最近研究的打乱模型提出准确的子计算算算法。 我们首先提出一种基本技术, 叫做 Wedge 冲洗法, 以发送 wedge 信息, 这是几个子集的主要组成部分, 带有小噪音。 然后我们用我们的 Wedge 冲洗法来计算三角形和 4 周期 -- 用于分析组合趋势的基本子集图, 需要很多额外的技术。 我们还展示了每种算法的估计错误的上层。 我们通过全面实验显示, 我们的单轮抖算法在准确性方面大大超出一回合本地算法, 并且用一个合理的隐私预算实现小于DP边缘 1 。

0
下载
关闭预览

相关内容

专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员