The numerical analysis of causal fermion systems is advanced by employing differentiable programming methods. The causal action principle for weighted counting measures is introduced for general values of the integer parameters $f$ (the particle number), $n$ (the spin dimension) and $m$ (the number of spacetime points). In the case $n=1$, the causal relations are clarified geometrically in terms of causal cones. Discrete Dirac spheres are introduced as candidates for minimizers for large $m$ in the cases $n=1, f=2$ and $n=2, f=4$. We provide a thorough numerical analysis of the causal action principle for weighted counting measures for large $m$ in the cases $n=1,2$ and $f=2,3,4$. Our numerical findings corroborate that all minimizers for large $m$ are good approximations of the discrete Dirac spheres. In the example $n=1, f=3$ it is explained how numerical minimizers can be visualized by projected spacetime plots. Methods and prospects are discussed to numerically investigate settings in which hitherto no analytic candidates for minimizers are known.
翻译:采用不同的编程方法推进因果发酵系统的数字分析,采用不同的编程方法推进因果发热系统的数字分析,采用因果计数措施的因果行动原则,对整数参数的通用值,即:f美元(粒子数)、n美元(旋转尺寸)和m美元(空间时间点数)采用因果计数原则。在这种情况中,n=1美元、f=2美元和n=2美元(f=4美元),采用因果计数措施的因果行动原则,对因果计算大数参数的通用值,即1美元、美元(旋转尺寸)和美元(空间点数)和美元(时数点数点数数数数数数数法原则进行彻底的数字分析。我们的数字调查结果证实,大数额的因果关系是离散Dirac区域的良好近似值。例如,美元=1美元(f=3美元)是说明预测空间时地图如何将数字最小化。我们讨论的方法和前景,以便进行数字调查,迄今尚不知道有多少分析对象。