Automatic Programming is one of the most important areas of computer science research today. Hardware speed and capability have increased exponentially, but the software is years behind. The demand for software has also increased significantly, but it is still written in old fashion: by using humans. There are multiple problems when the work is done by humans: cost, time, quality. It is costly to pay humans, it is hard to keep them satisfied for a long time, it takes a lot of time to teach and train them and the quality of their output is in most cases low (in software, mostly due to bugs). The real advances in human civilization appeared during the industrial revolutions. Before the first revolution, most people worked in agriculture. Today, very few percent of people work in this field. A similar revolution must appear in the computer programming field. Otherwise, we will have so many people working in this field as we had in the past working in agriculture. How do people know how to write computer programs? Very simple: by learning. Can we do the same for software? Can we put the software to learn how to write software? It seems that is possible (to some degree) and the term is called Machine Learning. It was first coined in 1959 by the first person who made a computer perform a serious learning task, namely, Arthur Samuel. However, things are not so easy as in humans (well, truth to be said - for some humans it is impossible to learn how to write software). So far we do not have software that can learn perfectly to write software. We have some particular cases where some programs do better than humans, but the examples are sporadic at best. Learning from experience is difficult for computer programs. Instead of trying to simulate how humans teach humans how to write computer programs, we can simulate nature.


翻译:自动编程是当今计算机科学研究中最重要的领域之一。 硬件速度和能力已经大幅增长, 但软件却落后了多年。 对软件的需求也大幅增长, 但软件的需求仍然以老式写作: 使用人类。 当工作是由人类完成时, 有很多问题: 成本、 时间、 质量。 否则, 我们将会有很多人在这个领域工作, 像我们过去在农业工作一样。 人们如何知道如何写计算机程序? 很简单: 学习如何做到简单。 我们能否在软件上做同样的事情? 我们能否在软件上做同样的事情? 在工业革命期间,人类文明的真正进步出现了。 在第一次革命之前, 大多数人在农业工作。 今天, 极少数的人在这个领域工作。 类似的革命必须出现在计算机编程中。 否则, 我们将会有如此多的人在这个领域工作, 像过去在农业工作一样。 人们如何知道如何写电脑程序? 很简单: 学习如何做到简单简单。 我们能否在软件上做同样的事情呢? 我们能否在软件上学会如何写程序呢? 我们能否把软件放在如何学得更好呢? 在工业革命期间, 似乎这是可能的(到某种程度)

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
24+阅读 · 2019年11月24日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
26+阅读 · 2018年8月19日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
35+阅读 · 2021年8月2日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
24+阅读 · 2019年11月24日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
26+阅读 · 2018年8月19日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
151+阅读 · 2017年8月1日
Top
微信扫码咨询专知VIP会员