We consider the problem of molecular graph generation using deep models. While graphs are discrete, most existing methods use continuous latent variables, resulting in inaccurate modeling of discrete graph structures. In this work, we propose GraphDF, a novel discrete latent variable model for molecular graph generation based on normalizing flow methods. GraphDF uses invertible modulo shift transforms to map discrete latent variables to graph nodes and edges. We show that the use of discrete latent variables reduces computational costs and eliminates the negative effect of dequantization. Comprehensive experimental results show that GraphDF outperforms prior methods on random generation, property optimization, and constrained optimization tasks.
翻译:我们考虑使用深层模型生成分子图的问题。 虽然图形是离散的, 但大多数现有方法都使用连续潜伏变量, 导致离散图结构的不准确建模。 在这项工作中, 我们提议了 GraphDF, 这是一种新型的离散潜伏变量模型, 用于以正常流程方法生成分子图。 图形DF使用不可逆的模子变换, 将离散潜伏变量转换成图形节点和边缘。 我们显示, 离散潜伏变量的使用会降低计算成本, 消除分解的负面影响。 综合实验结果显示, 图形DF在随机生成、 属性优化和限制优化任务方面, 超越了先前的方法 。