This paper reports the impacts of temperature variation on the inference accuracy of pre-trained all-ferroelectric FinFET deep neural networks, along with plausible design techniques to abate these impacts. We adopted a pre-trained artificial neural network (N.N.) with 96.4% inference accuracy on the MNIST dataset as the baseline. As an aftermath of temperature change, a compact model captured the conductance drift of a programmed cell over a wide range of gate biases. We observed a significant inference accuracy degradation in the analog neural network at 233 K for an N.N. trained at 300 K. Finally, we deployed binary neural networks with "read voltage" optimization to ensure immunity of N.N. to accuracy degradation under temperature variation, maintaining an inference accuracy of 96%. Keywords: Ferroelectric memories
翻译:本文报告了温度变化对经过预先训练的全热电深神经网络的推论精度的影响,以及减轻这些影响的合理设计技术。我们采用了预先训练的人工神经网络(N.N.),对MNIST数据集的推论精度为96.4%。作为温度变化的结果,一个紧凑模型记录了一个编程的细胞在广泛的门道偏差上的导演漂移。我们观察到在300K.受过训练的N.N.在233K.的模拟神经网络中出现了重大的推论精度下降。最后,我们安装了“读电”优化的二进神经网络,以确保N.N.在温度变异情况下的精度降低,保持96%的推论精度。关键词: