Not everybody can be equipped with professional photography skills and sufficient shooting time, and there can be some tilts in the captured images occasionally. In this paper, we propose a new and practical task, named Rotation Correction, to automatically correct the tilt with high content fidelity in the condition that the rotated angle is unknown. This task can be easily integrated into image editing applications, allowing users to correct the rotated images without any manual operations. To this end, we leverage a neural network to predict the optical flows that can warp the tilted images to be perceptually horizontal. Nevertheless, the pixel-wise optical flow estimation from a single image is severely unstable, especially in large-angle tilted images. To enhance its robustness, we propose a simple but effective prediction strategy to form a robust elastic warp. Particularly, we first regress the mesh deformation that can be transformed into robust initial optical flows. Then we estimate residual optical flows to facilitate our network the flexibility of pixel-wise deformation, further correcting the details of the tilted images. To establish an evaluation benchmark and train the learning framework, a comprehensive rotation correction dataset is presented with a large diversity in scenes and rotated angles. Extensive experiments demonstrate that even in the absence of the angle prior, our algorithm can outperform other state-of-the-art solutions requiring this prior. The codes and dataset will be available at https://github.com/nie-lang/RotationCorrection.


翻译:并非每个人都能够拥有专业摄影技能和足够的拍摄时间, 并且有时拍摄到的图像也会有一些倾斜。 在本文中, 我们提议一项新的实用任务, 名为旋转校正, 以自动纠正高内容忠诚度的倾斜, 条件是旋转角度未知。 这项任务可以很容易地融入图像编辑应用程序, 使用户能够校正旋转的图像, 无需任何手动操作即可。 为此, 我们利用神经网络来预测光学流, 光学流可以扭曲倾斜的图像, 从而在感知上水平。 尽管如此, 单张图像的像素光学流估计非常不稳定, 特别是在大角倾斜图像中。 为了增强它的稳健性, 我们建议了一个简单而有效的预测战略, 以形成一个强大的弹性扭曲。 特别是, 我们首先可以重新审视可以转换为稳健的初始光学流的网形变变变形。 然后我们估计残余光流, 方便我们的网络具有像素顺向变形的灵活性, 进一步校正变形图像的细节 。 但是, 要建立评估基准并训练学习框架,, 特别是大角倾角倾斜倾斜的图像 。, 我们的旋转前的变形校正 将显示前的变形 。 。 将显示前的变形的变形变形 。 。 将显示前的变形变形的变形的变形的变形的变形的变形的变形 。 。 。 。 。 。 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月26日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员