With dense inputs, Neural Radiance Fields (NeRF) is able to render photo-realistic novel views under static conditions. Although the synthesis quality is excellent, existing NeRF-based methods fail to obtain moderate three-dimensional (3D) structures. The novel view synthesis quality drops dramatically given sparse input due to the implicitly reconstructed inaccurate 3D-scene structure. We propose SfMNeRF, a method to better synthesize novel views as well as reconstruct the 3D-scene geometry. SfMNeRF leverages the knowledge from the self-supervised depth estimation methods to constrain the 3D-scene geometry during view synthesis training. Specifically, SfMNeRF employs the epipolar, photometric consistency, depth smoothness, and position-of-matches constraints to explicitly reconstruct the 3D-scene structure. Through these explicit constraints and the implicit constraint from NeRF, our method improves the view synthesis as well as the 3D-scene geometry performance of NeRF at the same time. In addition, SfMNeRF synthesizes novel sub-pixels in which the ground truth is obtained by image interpolation. This strategy enables SfMNeRF to include more samples to improve generalization performance. Experiments on two public datasets demonstrate that SfMNeRF surpasses state-of-the-art approaches. Code is available at https://github.com/XTU-PR-LAB/SfMNeRF


翻译:通过密集输入,神经辐射场(NeRF)可以在静态条件下渲染逼真的新视角。虽然综合质量很高,但现有基于NeRF的方法无法获得中等三维(3D)结构。由于隐式重建的不准确的3D场景结构,给定稀疏输入时,新视图综合质量会急剧下降。我们提出了SfMNeRF,一种更好的合成新视角以及重构3D场景几何的方法。SfMNeRF利用自监督深度估计方法的知识,以在视角综合训练期间限制3D场景几何学。具体而言,SfMNeRF使用基础,光度一致性,深度平滑性和匹配位置约束来显式重建3D场景结构。通过这些显式约束和NeRF的隐式约束,我们的方法同时改善了NeRF的视图综合和3D场景几何性能。此外,SfMNeRF合成新的亚像素,其中通过图像插值获得真实值。这种策略使SfMNeRF能够包含更多样本以提高泛化性能。在两个公共数据集上的实验证明,SfMNeRF超越了最先进的方法。 代码可在 https://github.com/XTU-PR-LAB/SfMNeRF 获取。

0
下载
关闭预览

相关内容

专知会员服务
72+阅读 · 2021年5月28日
专知会员服务
56+阅读 · 2021年1月26日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
VIP会员
相关VIP内容
专知会员服务
72+阅读 · 2021年5月28日
专知会员服务
56+阅读 · 2021年1月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员