Commonsense knowledge-graphs (CKGs) are important resources towards building machines that can 'reason' on text or environmental inputs and make inferences beyond perception. While current CKGs encode world knowledge for a large number of concepts and have been effectively utilized for incorporating commonsense in neural models, they primarily encode declarative or single-condition inferential knowledge and assume all conceptual beliefs to have the same likelihood. Further, these CKGs utilize a limited set of relations shared across concepts and lack a coherent knowledge organization structure resulting in redundancies as well as sparsity across the larger knowledge graph. Consequently, today's CKGs, while useful for a first level of reasoning, do not adequately capture deeper human-level commonsense inferences which can be more nuanced and influenced by multiple contextual or situational factors. Accordingly, in this work, we study how commonsense knowledge can be better represented by -- (i) utilizing a probabilistic logic representation scheme to model composite inferential knowledge and represent conceptual beliefs with varying likelihoods and (ii) incorporating a hierarchical conceptual ontology to identify salient concept-relevant relations and organize beliefs at different conceptual levels. Our resulting knowledge representation framework can encode a wider variety of world knowledge and represent beliefs flexibly using grounded concepts as well as free-text phrases. As a result, the framework can be utilized as both a traditional free-text knowledge graph and a grounded logic-based inference system more suitable for neuro-symbolic applications. We describe how we extend the PrimeNet knowledge base with our framework through crowd-sourcing and expert-annotation, and demonstrate its application for more interpretable passage-based semantic parsing and question answering.
翻译:常识知识谱(CKGs)是用来建立机器的重要资源,这些机器能够“根据”文字或环境投入进行“理性”并作出超出感知范围的推断。尽管目前的CKGs将世界知识编码为大量概念,并被有效地用于将常识知识纳入神经模型,但它们主要用来将常识编码为宣示性或单一条件的推断性知识,并假定所有概念信念具有同样的可能性。此外,这些CKGs利用了一套概念之间共享的有限关系,缺乏一个连贯的知识组织架构,导致在更大的知识图中出现冗余度和偏差。因此,今天的CKGs虽然对一级推理有用,但却没有适当地捕捉到更深层次的人类水平的常识性常识,而这种常识则可能受到多种背景或情况因素的影响。因此,我们的研究是,共同点知识可以如何更好地被基于 -- (i) 利用一种不稳定的逻辑表达性逻辑框架来模拟精度知识,并代表概念学应用和不同的可能性和(ii) 将一个更深层次的概念概念概念解释关系作为更深层次的理论基础,作为我们概念基础,用来组织一个更深层次、更深层次的理论基础,用来解释一个更深层次的理论基础,作为我们的知识基础,作为一个更深层次的理论基础,用来解释一个更深层次的理论基础,用来解释一个更深层次的理论解释,作为一种解释,作为我们的知识基础。