This study experimentally validated the possibility of angle of departure (AoD) estimation using multiple signal classification (MUSIC) with only WiFi control frames for beamforming feedback (BFF), defined in IEEE 802.11ac/ax. The examined BFF-based MUSIC is a model-driven algorithm, which does not require a pre-obtained database. This contrasts with most existing BFF-based sensing techniques, which are data-driven and require a pre-obtained database. Moreover, the BFF-based MUSIC affords an alternative AoD estimation method without access to channel state information (CSI). Specifically, the extensive experimental and numerical evaluations demonstrated that the BFF-based MUSIC successfully estimates the AoDs for multiple propagation paths. Moreover, the evaluations performed in this study revealed that the BFF-based MUSIC achieved a comparable error of AoD estimation to the CSI-based MUSIC, while BFF is a highly compressed version of CSI in IEEE 802.11ac/ax.
翻译:这项研究实验性地验证了利用多种信号分类(MUSIC)进行离线(AoD)估计的可能性,该分类在IEEE 802.11aac/ax中定义,只有无线Fi控制框架用于波形反馈(BFF),经审查的BFFMSIC是一种模型驱动的算法,不需要事先建立数据库,这与大多数现有的基于BFF的遥感技术形成对比,这些技术是数据驱动的,需要事先建立的数据库。此外,基于BFF的MISIC提供了一种替代的AOD估计方法,但无法调阅频道状态信息(CSI)。具体地说,广泛的实验和数字评估表明,基于BFF的MISIC成功估计了多传播路径的AD。此外,这项研究进行的评估表明,基于BFF的MISIC在AD估计与基于CSI的MISIC中取得了一个类似的错误,而BFF是IE 802.11ac/ax中高度压缩的CSI版本。