This article describes F-IVM, a unified approach for maintaining analytics over changing relational data. We exemplify its versatility in four disciplines: processing queries with group-by aggregates and joins; learning linear regression models using the covariance matrix of the input features; building Chow-Liu trees using pairwise mutual information of the input features; and matrix chain multiplication. F-IVM has three main ingredients: higher-order incremental view maintenance; factorized computation; and ring abstraction. F-IVM reduces the maintenance of a task to that of a hierarchy of simple views. Such views are functions mapping keys, which are tuples of input values, to payloads, which are elements from a ring. F-IVM also supports efficient factorized computation over keys, payloads, and updates. Finally, F-IVM treats uniformly seemingly disparate tasks. In the key space, all tasks require joins and variable marginalization. In the payload space, tasks differ in the definition of the sum and product ring operations. We implemented F-IVM on top of DBToaster and show that it can outperform classical first-order and fully recursive higher-order incremental view maintenance by orders of magnitude while using less memory.


翻译:F-IVM是维护对关系数据变化的分析的统一方法。我们用四个学科来展示它的多功能性:以集成和组合方式处理询问;使用输入特征的共变量矩阵学习线性回归模型;使用输入特征的双向信息建设周柳树;以及矩阵链乘法。F-IVM有三个主要要素:较高级递增视图维护;因数计算;和环抽象化。F-IVM将任务维持到简单观点的层次。这些观点是用于绘制键的功能,这是输入值图示,是来自环的元件。F-IVM还支持对键、有效载荷和更新进行高效的因数化计算。最后,F-IVM处理一致看似截然不同的任务。在关键空间,所有任务都需要组合和可变的边缘化。在有效载荷空间,任务在数量和产品环操作的定义上有所不同。我们在DBToster顶部执行F-IVM, 显示它能够使用较低的存储级先级,同时使用较慢的递增级的存储序列。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
162+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月6日
Arxiv
0+阅读 · 2023年5月4日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员