We propose Hierarchical ProtoPNet: an interpretable network that explains its reasoning process by considering the hierarchical relationship between classes. Different from previous methods that explain their reasoning process by dissecting the input image and finding the prototypical parts responsible for the classification, we propose to explain the reasoning process for video action classification by dissecting the input video frames on multiple levels of the class hierarchy. The explanations leverage the hierarchy to deal with uncertainty, akin to human reasoning: When we observe water and human activity, but no definitive action it can be recognized as the water sports parent class. Only after observing a person swimming can we definitively refine it to the swimming action. Experiments on ActivityNet and UCF-101 show performance improvements while providing multi-level explanations.
翻译:我们提出等级化的ProtoPNet:一个解释性网络,通过考虑各等级之间的等级关系来解释其推理过程。不同于以前通过分解输入图像和找到负责分类的原型部分来解释其推理过程的方法,我们建议解释视频行动分类的推理过程,在等级层次的多个层次上分解输入视频框。解释性解释利用等级处理不确定性,类似于人类推理:当我们观察水和人类活动时,但不能确认它为水运动家长阶级。只有在观察一个人游泳之后,我们才能对游泳动作作出明确的改进。关于活动网和UCF-101的实验在提供多层次的解释的同时显示了业绩的改善。