Multiple-Input Multiple-Output (MIMO) systems are essential for wireless communications. Sinceclassical algorithms for symbol detection in MIMO setups require large computational resourcesor provide poor results, data-driven algorithms are becoming more popular. Most of the proposedalgorithms, however, introduce approximations leading to degraded performance for realistic MIMOsystems. In this paper, we introduce a neural-enhanced hybrid model, augmenting the analyticbackbone algorithm with state-of-the-art neural network components. In particular, we introduce aself-attention model for the enhancement of the iterative Orthogonal Approximate Message Passing(OAMP)-based decoding algorithm. In our experiments, we show that the proposed model canoutperform existing data-driven approaches for OAMP while having improved generalization to otherSNR values at limited computational overhead.
翻译:无线通信必须使用多种产出(MIIMO)系统。由于在MIMO设置中用于符号检测的古典算法需要大量计算资源或提供不良的结果,数据驱动算法越来越受欢迎。然而,大多数拟议数字算法都引入近似值,导致现实的MIMO系统性能退化。在本文中,我们引入了神经增强混合模型,用最新神经网络组件增强分析后骨算法。特别是,我们引入了增强迭接Orthogonal Appoblication(OAMP)基础的解码算法的自我注意模型。我们在实验中显示,拟议的模型可以使OAMP的现有数据驱动方法产生效果,同时在有限的计算间接费用上改进了对SNR其他值的概括性化。</s>