We consider the problem of in-order packet transmission over a cascade of packet-erasure links with acknowledgment (ACK) signals, interconnected by relays. We treat first the case of transmitting a single packet, in which ACKs are unnecessary, over links with independent identically distributed erasures. For this case, we derive tight upper and lower bounds on the probability of arrive failure within an allowed end-to-end communication delay over a given number of links. When the number of links is commensurate with the allowed delay, we determine the maximal ratio between the two -- coined information velocity -- for which the arrive-failure probability decays to zero; we further derive bounds on the arrive-failure probability when the ratio is below the information velocity, determine the exponential arrive-failure decay rate, and extend the treatment to links with different erasure probabilities. We then elevate all these results for a stream of packets with independent geometrically distributed interarrival times, and prove that the information velocity and the exponential decay rate remain the same for any stationary ergodic arrival process and for deterministic interarrival times. We demonstrate the significance of the derived fundamental limits -- the information velocity and the arrive-failure exponential decay rate -- by comparing them to simulation results.


翻译:我们考虑的是用一个包封封锁链连接确认(ACK)信号,由中继器连接连接的分包封装包传输的问题。我们首先处理的是发送一个单包(在其中,ACC是不必要的)的情况,然后处理的是与独立分布完全相同的分批的分包。对于这个案例,我们从一个允许的端到端通信延迟范围内,从抵达概率的分包中得出严格的上下界限。当链接的数量与允许的延迟相对应时,我们确定两个 -- -- 即自动信息速度 -- -- 之间的最大比率 -- 信息速度 -- -- 到达概率降至零;当比例低于信息速度时,我们进一步从到货概率概率的误差概率上提取误差的界限,确定指数到差衰减率,并将治疗范围扩大到与不同分期通信概率的联系。然后,我们将所有这些结果提升为一流的包,以独立的几何分布的间抵达时间相对,并证明信息速度和指数衰败率率对于任何定位的抵达过程和任何定态递递归进程而言,我们进一步得出了抵达概率速度的速率。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
征稿 | 国际KG大会IJCKG 2021投稿延期!推荐 SCI 一区期刊
开放知识图谱
0+阅读 · 2021年9月29日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关VIP内容
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
征稿 | 国际KG大会IJCKG 2021投稿延期!推荐 SCI 一区期刊
开放知识图谱
0+阅读 · 2021年9月29日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员