We investigate the changing nature of the frequency, magnitude and spatial extent of extreme temperature in Ireland from 1960 to 2019. We develop an extreme value model that captures spatial and temporal non-stationarity in extreme daily maximum temperature data. We model the tails of the marginal variables using the generalised Pareto distribution and the spatial dependence of extreme events by a semi-parametric Brown-Resnick r-generalised Pareto process, with parameters of each model allowed to change over time. We use weather station observations for modelling extreme events since data from climate models involves abstraction and can over-smooth these events. However, climate models do provide valuable information about the detailed physiography over Ireland. We propose novel methods which exploit the climate model data to overcome issues linked to the sparse and biased sampling of the observations. Our analysis identifies a substantial temporal change in the marginal behaviour, but not the dependence structure, of extreme temperature events over the study domain. We illustrate how these characteristics result in an increased spatial coverage of the events that exceed critical temperatures.
翻译:我们调查1960年至2019年爱尔兰极端温度的频率、规模和空间范围的变化性质。我们开发了一个极端价值模型,在极端的每日最高温度数据中反映空间和时间上的不常态性;我们利用泛泛Pareto分布和极端事件的空间依赖性来模拟边际变量的尾部,采用半分法的Brown-Resnick rmalized Pareto进程,并使用允许随时间变化的每个模型的参数来模拟极端事件。我们利用气象站观测来模拟极端事件,因为气候模型的数据涉及抽象性,而且能够超浮透这些事件。然而,气候模型确实提供了爱尔兰各地详细物理学的宝贵信息。我们提出了利用气候模型数据克服与观测结果稀少和偏差抽样有关的问题的新方法。我们的分析确定了研究领域极端温度事件的边际行为的重大时间变化,而不是依赖性结构。我们说明了这些特征如何导致超过临界温度的事件的空间覆盖面的增加。