Modelling dependencies between climate extremes is important for climate risk assessment, for instance when allocating emergency management funds. In statistics, multivariate extreme value theory is often used to model spatial extremes. However, most commonly used approaches require strong assumptions and are either too simplistic or over-parameterized. From a machine learning perspective, Generative Adversarial Networks (GANs) are a powerful tool to model dependencies in high-dimensional spaces. Yet in the standard setting, GANs do not well represent dependencies in the extremes. Here we combine GANs with extreme value theory (evtGAN) to model spatial dependencies in summer maxima of temperature and winter maxima in precipitation over a large part of western Europe. We use data from a stationary 2000-year climate model simulation to validate the approach and explore its sensitivity to small sample sizes. Our results show that evtGAN outperforms classical GANs and standard statistical approaches to model spatial extremes. Already with about 50 years of data, which corresponds to commonly available climate records, we obtain reasonably good performance. In general, dependencies between temperature extremes are better captured than dependencies between precipitation extremes due to the high spatial coherence in temperature fields. Our approach can be applied to other climate variables and can be used to emulate climate models when running very long simulations to determine dependencies in the extremes is deemed infeasible.
翻译:气候极端之间的建模依赖性对于气候风险评估十分重要,例如在分配应急管理资金时。 在统计中,多变极端值理论常常被用于模拟空间极端。 但是,最常用的方法需要强的假设,而且过于简单或过于简单。 从机器学习的角度来看, 生成反反差网络(GANs)是高维空间模型依赖性的一个强大工具。 但在标准设置中, GANs并不完全代表极端地区的依赖性。 我们在这里将GANs与极端价值理论(evtGAN)结合起来,以模拟西欧大部分地区降水的夏季温度和冬季峰值的空间依赖性。 我们使用2000年固定气候模型模拟的数据来验证这一方法,并探索其对小样本大小的敏感性。 我们的结果表明,evtGAN(GAN)与经典GANs和标准统计模型相比,在模拟空间极端依赖性模式。 大约50年的数据(这与普通的气候记录相对应,我们获得了合理的良好业绩。 一般来说,在极端的气温变量之间,我们使用依赖性在极端的温度变量中可以更好地使用。