Neural networks are omnipresent, but remain poorly understood. Their increasing complexity and use in critical systems raises the important challenge to full interpretability. We propose to address a simple well-posed learning problem: estimating the radius of a centred pulse in a one-dimensional signal or of a centred disk in two-dimensional images using a simple convolutional neural network. Surprisingly, understanding what trained networks have learned is difficult and, to some extent, counter-intuitive. However, an in-depth theoretical analysis in the one-dimensional case allows us to comprehend constraints due to the chosen architecture, the role of each filter and of the nonlinear activation function, and every single value taken by the weights of the model. Two fundamental concepts of neural networks arise: the importance of invariance and of the shape of the nonlinear activation functions.
翻译:神经网络无处不在,但是仍然不易理解。它们日益复杂,在关键系统中的使用也越来越难于理解。它们越来越难理解,这给充分解释提出了重要挑战。我们建议解决一个简单的、有明确位置的学习问题:用简单的进化神经网络来估计单维信号中中中心脉冲的半径,或用二维图像中中心磁盘的半径。令人惊讶的是,了解受过训练的网络所学到的东西是困难的,而且在某种程度上是反直觉的。然而,一维案例的深入理论分析使我们能够理解由于所选择的结构、每个过滤器和非线性激活功能的作用以及模型重量所取的每一个单一价值而产生的限制。神经网络的两个基本概念产生:变化的重要性和非线性激活功能的形状。</s>