We present VPVnet, a deep neural network method for the Stokes' equations under reduced regularity. Different with recently proposed deep learning methods [40,51] which are based on the original form of PDEs, VPVnet uses the least square functional of the first-order velocity-pressure-vorticity (VPV) formulation ([30]) as loss functions. As such, only first-order derivative is required in the loss functions, hence the method is applicable to a much larger class of problems, e.g. problems with non-smooth solutions. Despite that several methods have been proposed recently to reduce the regularity requirement by transforming the original problem into a corresponding variational form, while for the Stokes' equations, the choice of approximating spaces for the velocity and the pressure has to satisfy the LBB condition additionally. Here by making use of the VPV formulation, lower regularity requirement is achieved with no need for considering the LBB condition. Convergence and error estimates have been established for the proposed method. It is worth emphasizing that the VPVnet method is divergence-free and pressure-robust, while classical inf-sup stable mixed finite elements for the Stokes' equations are not pressure-robust. Various numerical experiments including 2D and 3D lid-driven cavity test cases are conducted to demonstrate its efficiency and accuracy.


翻译:我们提出VPVnet,这是Stokes方程式的深度神经网络网方法。与最近提出的基于最初形式PDEs的深深学习方法[40,51]不同,VPVnet使用一级速度压力-压力-温度(VPV)配方([30])的最平方功能作为损失功能。因此,损失函数只需要一阶衍生物,因此该方法适用于更大范围的问题,例如非粘合性解决办法的问题。尽管最近提出了几种方法,通过将最初的问题转换成相应的变异形式来降低常规性要求,但VPVnet的原问题[40,51],VPVnet使用一级速度-压力-压力-温度(VPV)配方([30])配方的最小平方功能作为损失函数。因此,损失函数只需要一阶衍生物衍生物,因此该方法适用于更大范围的问题,例如非湿润性解决办法的问题。尽管最近提出了几种方法,通过将原来的问题转换成相应的变异性方法来降低常规性要求。值得强调的是,将VPVnet的精确性方法改为相应的变异性方法,将原始问题转换成相应的变异性-D方法,而软性试验中包括软体压力-软体压力-软体-软体-软体-软体-压-平面的软体-平方方格-平方格-平方方格-平方方程式,软体试验-平方格-平方格-平方格-平方格,而显示-平方格-平方格-平方格-平方格-平方格-平方格-平方格-方格-方格-正方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-正-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格-方格

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
71+阅读 · 2021年12月8日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
【NeurIPS2020-MIT】子图神经网络,Subgraph Neural Networks
专知会员服务
45+阅读 · 2020年9月28日
耶鲁大学《分布式系统理论》笔记,491页pdf
专知会员服务
44+阅读 · 2020年7月29日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
8+阅读 · 2018年1月25日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员