This paper considers coding for so-called partially stuck (defect) memory cells. Such memory cells can only store partial information as some of their levels cannot be used fully due to, e.g., wearout. First, we present new constructions that are able to mask $u$ partially stuck cells while correcting at the same time $t$ random errors. The process of "masking" determines a word whose entries coincide with writable levels at the (partially) stuck cells. For $u>1$ and alphabet size $q>2$, our new constructions improve upon the required redundancy of known constructions for $t=0$, and require less redundancy for masking partially stuck cells than former works required for masking fully stuck cells (which cannot store any information). Second, we show that treating some of the partially stuck cells as erroneous cells can decrease the required redundancy for some parameters. Lastly, we derive Singleton-like, sphere-packing-like, and Gilbert--Varshamov-like bounds. Numerical comparisons state that our constructions match the Gilbert--Varshamov-like bounds for several code parameters, e.g., BCH codes that contain all-one word by our first construction.
翻译:本文考虑所谓的部分卡在( 部分卡在) 内存单元格的编码。 这些内存单元格只能存储部分信息, 因为某些水平无法完全使用, 例如, 损耗 。 首先, 我们展示新的构造, 这些构造既能掩盖部分卡在单元格中的美元部分卡在单元格中, 同时纠正随机错误 $t$ 。 “ 制片” 的过程决定了一个单词, 其条目与( 部分) 被卡在单元格中的可写水平相吻合 。 对于 $> 1 美元和字母大小 $>2 美元, 我们的新构造改进了已知构造的冗余值, 以$t=0 来取代部分卡在部分卡在单元格中隐藏所需的冗余值, 并且比以前遮盖完全卡在单元格中的工程( 无法存储任何信息 ) 。 其次, 我们显示将部分卡在单元格中的部分卡在单元格中的某些错误处理可以减少某些参数所需的冗余值 。 最后, 我们从单子、 球包装类、 和 Gilbert- Varshamov- 类似字母的框框 。 。 。 数字比较表明我们的构造符合 Gilbert- Varhamov- 格式, 我们的构造与 Glave- breg of the the furds the the the as fine des the the the fine lades the the the the the fructions as as fructions of alls ofs ofs of thes ofs ofs ofs of fructions ofs ofs ofs ofs.