Despite their ubiquity throughout science and engineering, only a handful of partial differential equations (PDEs) have analytical, or closed-form solutions. This motivates a vast amount of classical work on numerical simulation of PDEs and more recently, a whirlwind of research into data-driven techniques leveraging machine learning (ML). A recent line of work indicates that a hybrid of classical numerical techniques with machine learning can offer significant improvements over either approach alone. In this work, we show that the choice of the numerical scheme is crucial when incorporating physics-based priors. We build upon Fourier-based spectral methods, which are considerably more efficient than other numerical schemes for simulating PDEs with smooth and periodic solutions. Specifically, we develop ML-augmented spectral solvers for three model PDEs of fluid dynamics, which improve upon the accuracy of standard spectral solvers at the same resolution. We also demonstrate a handful of key design principles for combining machine learning and numerical methods for solving PDEs.
翻译:尽管在整个科学和工程中都普遍存在,但只有少数部分差异方程式(PDEs)具有分析或封闭式的解决方案。这促使对PDEs的数值模拟进行大量经典工作,最近,对数据驱动技术的利用机器学习(ML)的研究回旋。最近的一行工作表明,传统数字技术与机器学习相结合,可以大大改进这两种方法。在这项工作中,我们表明,在纳入基于物理的先行时,数字方法的选择至关重要。我们利用基于Fourier的光谱方法,这些方法比以平滑和定期解决方案模拟PDEs的其他数字方法效率要高得多。具体地说,我们为三种流体动态模型PDEs开发ML增强光谱解析器,提高同一分辨率标准光谱解算器的准确性。我们还展示了将机器学习与解决PDEs的数字方法相结合的少数关键设计原则。