Modeling nonlinear spatiotemporal dynamical systems has primarily relied on partial differential equations (PDEs). However, the explicit formulation of PDEs for many underexplored processes, such as climate systems, biochemical reaction and epidemiology, remains uncertain or partially unknown, where very limited measurement data is yet available. To tackle this challenge, we propose a novel deep learning architecture that forcibly encodes known physics knowledge to facilitate learning in a data-driven manner. The coercive encoding mechanism of physics, which is fundamentally different from the penalty-based physics-informed learning, ensures the network to rigorously obey given physics. Instead of using nonlinear activation functions, we propose a novel elementwise product operation to achieve the nonlinearity of the model. Numerical experiment demonstrates that the resulting physics-encoded learning paradigm possesses remarkable robustness against data noise/scarcity and generalizability compared with some state-of-the-art models for data-driven modeling.
翻译:模拟非线性空间时空动态系统主要依赖部分差异方程(PDEs),然而,对于气候系统、生化反应和流行病学等许多探索不足的过程,对PDEs的清晰表述仍然不确定或部分未知,因为目前尚有非常有限的测量数据。为了应对这一挑战,我们提议了一个新的深层次学习结构,强制将已知的物理知识编码成册,以便利以数据驱动的方式进行学习。物理学的强制编码机制与基于惩罚的物理知情学习截然不同,它确保网络严格遵守特定物理学。我们建议采用非线性激活功能,而不是采用新颖的元素化产品操作,以实现模型的不线性。数字实验表明,由此形成的物理编码学习模式对数据噪声/偏差和与数据驱动模型的一些最先进的模型相比,具有显著的强健性。