When used in complex engineered systems, such as communication networks, artificial intelligence (AI) models should be not only as accurate as possible, but also well calibrated. A well-calibrated AI model is one that can reliably quantify the uncertainty of its decisions, assigning high confidence levels to decisions that are likely to be correct and low confidence levels to decisions that are likely to be erroneous. This paper investigates the application of conformal prediction as a general framework to obtain AI models that produce decisions with formal calibration guarantees. Conformal prediction transforms probabilistic predictors into set predictors that are guaranteed to contain the correct answer with a probability chosen by the designer. Such formal calibration guarantees hold irrespective of the true, unknown, distribution underlying the generation of the variables of interest, and can be defined in terms of ensemble or time-averaged probabilities. In this paper, conformal prediction is applied for the first time to the design of AI for communication systems in conjunction to both frequentist and Bayesian learning, focusing on demodulation, modulation classification, and channel prediction.


翻译:当用于通信网络等复杂工程系统时,人工智能(AI)模型应不仅尽可能准确,而且应精确校准。一个经过良好校准的AI模型可以可靠地量化其决定的不确定性,对可能正确的决定给予高度信任,对可能错误的决定给予低信任度;本文件调查了将一致预测作为获取具有正式校准保证的决定的AI模型的一般框架的适用情况; 非正式预测将概率预测器转换成一套预测器,保证包含正确的答案,且概率由设计者选择。 这种正式校准保证持有其决定的不确定性,而不论产生利益变量背后的真实的、未知的分布,并且可以以共同性或平均时间概率界定。在本文中,一致预测首次用于设计用于通信系统的AI,与经常语和巴耶斯语学习相结合,重点是演示、调制导分类和频道预测。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月14日
Arxiv
64+阅读 · 2021年6月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员