We present an out-of-core variational approach for surface reconstruction from a set of aligned depth maps. Input depth maps are supposed to be reconstructed from regular photos or/and can be a representation of terrestrial LIDAR point clouds. Our approach is based on surface reconstruction via total generalized variation minimization ($TGV$) because of its strong visibility-based noise-filtering properties and GPU-friendliness. Our main contribution is an out-of-core OpenCL-accelerated adaptation of this numerical algorithm which can handle arbitrarily large real-world scenes with scale diversity.
翻译:我们从一组统一的深度地图上提出地表重建的“核心变异”方法,输入深度地图应该从常规照片中重建,或者/并且可以代表陆地的LIDAR点云。我们的方法是以地面重建为基础,通过完全普遍变异最小化(TGV$),因为地面重建具有很强的能见度、噪音过滤特性和GPU的友好性。我们的主要贡献是对这个数字算法进行超出核心的 OpenCL加速调整,这个算法可以任意处理具有规模多样性的大型真实世界场景。