In most error correction coding (ECC) frameworks, the typical error metric is the bit error rate (BER) which measures the number of bit errors. For this metric, the positions of the bits are not relevant to the decoding, and in many noise models, not relevant to the BER either. In many applications this is unsatisfactory as typically all bits are not equal and have different significance. We consider the problem of bit error correction and mitigation where bits in different positions have different importance. For error correction, we look at ECC from a Bayesian perspective and introduce Bayes estimators with general loss functions to take into account the bit significance. We propose ECC schemes that optimize this error metric. As the problem is highly nonlinear, traditional ECC construction techniques are not applicable. Using exhaustive search is cost prohibitive, and thus we use iterative improvement search techniques to find good codebooks. We optimize both general codebooks and linear codes. We provide numerical experiments to show that they can be superior to classical linear block codes such as Hamming codes and decoding methods such as minimum distance decoding. For error mitigation, we study the case where ECC is not possible or not desirable, but significance aware encoding of information is still beneficial in reducing the average error. We propose a novel number presentation format suitable for emerging storage media where the noise magnitude is unknown and possibly large and show that it has lower mean error than the traditional number format.


翻译:在大多数错误校正编码( ECC) 框架中, 典型的错误衡量标准是比特错误率( BER), 用来测量比特错误的数量。 对于这个衡量标准, 位点的位置与解码无关, 在许多噪音模型中, 也与BER无关。 在许多应用中, 这一点并不令人满意, 因为所有位点通常不相等, 具有不同意义。 我们考虑的是位点不同位置的位点具有不同重要性的比特错误校正和缓解问题。 对于差点校正, 我们从巴耶西亚的角度来查看比特错误校正率, 并引入带有一般损失函数的贝耶斯测算器, 以考虑到比特值的重要性。 我们提出优化误差度测量方法。 由于问题高度不线性, 传统的ECC 构建技术不适用, 因此我们使用迭代改进搜索技术来寻找好代码。 我们优化普通代码和线性代码。 我们提供数字实验, 以显示它们可以优于典型的线性线性条码, 比如 Hamming 代码和解码方法, 例如最小的距离解码功能。 我们提议优化校略方法来优化度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
90+阅读 · 2020年10月22日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
4+阅读 · 2021年7月1日
Arxiv
6+阅读 · 2018年1月14日
Arxiv
3+阅读 · 2017年12月1日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
Top
微信扫码咨询专知VIP会员