We present a method for generating, predicting, and using Spatiotemporal Occupancy Grid Maps (SOGM), which embed future semantic information of real dynamic scenes. We present an auto-labeling process that creates SOGMs from noisy real navigation data. We use a 3D-2D feedforward architecture, trained to predict the future time steps of SOGMs, given 3D lidar frames as input. Our pipeline is entirely self-supervised, thus enabling lifelong learning for real robots. The network is composed of a 3D back-end that extracts rich features and enables the semantic segmentation of the lidar frames, and a 2D front-end that predicts the future information embedded in the SOGM representation, potentially capturing the complexities and uncertainties of real-world multi-agent, multi-future interactions. We also design a navigation system that uses these predicted SOGMs within planning, after they have been transformed into Spatiotemporal Risk Maps (SRMs). We verify our navigation system's abilities in simulation, validate it on a real robot, study SOGM predictions on real data in various circumstances, and provide a novel indoor 3D lidar dataset, collected during our experiments, which includes our automated annotations.
翻译:我们提出了一个生成、预测和使用Spatotoat-时间占用网格地图(SOGM)的方法,该图将包含未来真实动态场景的语义信息。我们展示了一个自动标签程序,从噪音的真实导航数据中创建SOGM。我们使用一个3D-2D feffforward 结构,经过培训可以预测SOGMs的未来时间步骤,以3D 里拉框架作为输入。我们的管道完全由自己监督,从而使得真正的机器人能够终身学习。网络由3D后端组成,该后端将提取丰富的功能,并能够使Lidar框架的语义分解,以及2D前端,该前端将预测SOGM所代表的未来信息,有可能捕捉现实世界多剂、多方向互动的复杂性和不确定性。我们还设计了一个导航系统,在将这些预测的SOGMs转化为Spatotomal 风险地图(SRM)之后,在规划中使用这些导航系统。我们核查了我们的导航系统在模拟方面的能力,在真实的机器人上验证它,在真实的机器人上验证它,研究SOGMlGM的预测,在各种情况下收集了我们的数据,并提供了新的数据。