The navigation of robots in dynamic urban environments, requires elaborated anticipative strategies for the robot to avoid collisions with dynamic objects, like bicycles or pedestrians, and to be human aware. We have developed and analyzed three anticipative strategies in motion planning taking into account the future motion of the mobile objects that can move up to 18 km/h. First, we have used our hybrid policy resulting from a Deep Deterministic Policy Gradient (DDPG) training and the Social Force Model (SFM), and we have tested it in simulation in four complex map scenarios with many pedestrians. Second, we have used these anticipative strategies in real-life experiments using the hybrid motion planning method and the ROS Navigation Stack with Dynamic Windows Approach (NS-DWA). The results in simulations and real-life experiments show very good results in open environments and also in mixed scenarios with narrow spaces.
翻译:在动态城市环境中对机器人的导航,需要为机器人制定周密的预测战略,以避免与机动物体(如自行车或行人)相撞,并引起人类意识。我们制定和分析了三种预测战略,以进行运动规划,同时考虑到移动物体今后运动的动向,这些移动物体可以移动到18公里/小时。首先,我们采用了深确定性政策梯度(DPG)培训和社会力量模型(SFM)产生的混合政策,我们在四个复杂的地图情景中与许多行人进行了模拟试验。第二,我们利用混合运动规划方法和ROS导航系统(NS-DWA)与动态视窗(NS-DWA)方法(NS-DWA)一起进行实时实验。模拟和现实生活实验的结果显示,在开放环境中以及在与狭窄空间的混合情景中取得了非常好的结果。