Federated learning has emerged as a popular technique for distributing machine learning (ML) model training across the wireless edge. In this paper, we propose two timescale hybrid federated learning (TT-HF), a semi-decentralized learning architecture that combines the conventional device-to-server communication paradigm for federated learning with device-to-device (D2D) communications for model training. In TT-HF, during each global aggregation interval, devices (i) perform multiple stochastic gradient descent iterations on their individual datasets, and (ii) aperiodically engage in consensus procedure of their model parameters through cooperative, distributed D2D communications within local clusters. With a new general definition of gradient diversity, we formally study the convergence behavior of TT-HF, resulting in new convergence bounds for distributed ML. We leverage our convergence bounds to develop an adaptive control algorithm that tunes the step size, D2D communication rounds, and global aggregation period of TT-HF over time to target a sublinear convergence rate of O(1/t) while minimizing network resource utilization. Our subsequent experiments demonstrate that TT-HF significantly outperforms the current art in federated learning in terms of model accuracy and/or network energy consumption in different scenarios where local device datasets exhibit statistical heterogeneity. Finally, our numerical evaluations demonstrate robustness against outages caused by fading channels, as well favorable performance with non-convex loss functions.
翻译:联邦学习已成为在无线边缘传播机器学习(ML)模式培训的流行技术。在本文中,我们建议采用两种时间尺度混合混合联合学习(TT-HF),一种半分散化学习结构,将传统设备-服务器通信模式与设备-设备(D2D)通信模式相结合,用于模式培训。在TT-HF中,每个全球聚合间隔期间,装置(一)在个人数据集上进行多层随机梯度梯度下沉变,以及(二)通过合作,在地方集群内传播D2D通信,定期对其模型参数采用协商一致程序。在对梯度多样性作出新的一般定义后,我们正式研究TT-HF的趋同行为,从而形成分布式ML的新趋同圈。我们利用我们的趋同线来开发适应性控制算法,调整职档、D2D通信回合和TT-HF的全球汇总期,以便针对O(1/t)次线性趋同率,同时尽量减少网络资源的利用。我们随后进行的实验表明,TT-HF-HF的不精确性,在当前的统计模型中以不同的数据格式学习方式显示我们当地数据格式的准确性,在目前的统计模型中,最终的计算结果中,使当地数据格式超越了我们的数据格式超越了我们的数据格式的精确性能的计算。