We propose a new hybrid system for automatically generating and training quantum-inspired classifiers on grayscale images by using multiobjective genetic algorithms. We define a dynamic fitness function to obtain the smallest possible circuit and highest accuracy on unseen data, ensuring that the proposed technique is generalizable and robust. We minimize the complexity of the generated circuits in terms of the number of entanglement gates by penalizing their appearance. We reduce the size of the images with two dimensionality reduction approaches: principal component analysis (PCA), which is encoded in the individual for optimization purpose, and a small convolutional autoencoder (CAE). These two methods are compared with one another and with a classical nonlinear approach to understand their behaviors and to ensure that the classification ability is due to the quantum circuit and not the preprocessing technique used for dimensionality reduction.
翻译:我们提出一个新的混合系统,通过使用多客观的遗传算法,自动生成和培训灰度图像上的量子激励分类器。我们定义了动态健身功能,以获得尽可能最小的电路和对不可见数据的最准确性,确保拟议的技术是通用的和稳健的。我们通过惩罚其外观来尽量减少所生成电路的复杂程度,通过抑制其外观来尽量减少电路的纠缠门的数量。我们用两种维度降低方法缩小图像的大小:主要部件分析(PCA),为优化目的在个人中编码,以及小型电动自动电解码(CAE ) 。这两种方法是相互比较的,并与典型的非线性方法进行比较,以了解其行为,并确保分类能力来自量子电路,而不是用于减少维度的预处理技术。