In recent years, RAG has emerged as a key paradigm for enhancing large language models (LLMs). By integrating externally retrieved information, RAG alleviates issues like outdated knowledge and, crucially, insufficient domain expertise. While effective, RAG introduces new risks of external data extraction attacks (EDEAs), where sensitive or copyrighted data in its knowledge base may be extracted verbatim. These risks are particularly acute when RAG is used to customize specialized LLM applications with private knowledge bases. Despite initial studies exploring these risks, they often lack a formalized framework, robust attack performance, and comprehensive evaluation, leaving critical questions about real-world EDEA feasibility unanswered. In this paper, we present the first comprehensive study to formalize EDEAs against retrieval-augmented LLMs. We first formally define EDEAs and propose a unified framework decomposing their design into three components: extraction instruction, jailbreak operator, and retrieval trigger, under which prior attacks can be considered instances within our framework. Guided by this framework, we develop SECRET: a Scalable and EffeCtive exteRnal data Extraction aTtack. Specifically, SECRET incorporates (1) an adaptive optimization process using LLMs as optimizers to generate specialized jailbreak prompts for EDEAs, and (2) cluster-focused triggering, an adaptive strategy that alternates between global exploration and local exploitation to efficiently generate effective retrieval triggers. Extensive evaluations across 4 models reveal that SECRET significantly outperforms previous attacks, and is highly effective against all 16 tested RAG instances. Notably, SECRET successfully extracts 35% of the data from RAG powered by Claude 3.7 Sonnet for the first time, whereas other attacks yield 0% extraction. Our findings call for attention to this emerging threat.
翻译:暂无翻译