This paper focuses on the energy-time optimal control of wheeled mobile robots undergoing point-to-point transitions in an obstacles free space. Two interchangeable models are used to arrive at the necessary conditions for optimality. The first formulation exploits the Hamiltonian, while the second formulation considers the first variation of the augmented cost to derive the necessary conditions for optimality. Jacobi elliptic functions are shown to parameterize the closed form solutions for the states, control and costates. Analysis of the optimal control reveal that they are constrained to lie on a cylinder whose circular cross-section is a function of the weight penalizing the relative costs of time and energy. The evolving optimal costates for the second formulation are shown to lie on the intersection of two cylinders. The optimal control for the wheeled mobile robot undergoing point-to-point motion is also developed where the linear velocity is constrained to be time-invariant. It is shown that the costates are constrained to lie on the intersection of a cylinder and an extruded parabola. Numerical results for various point-to-point maneuvers are presented to illustrate the change in the structure of the optimal trajectories as a function of the relative location of the terminal and initial states.
翻译:本文侧重于对在自由空间障碍下正经历点到点过渡的轮式移动机器人的节能最佳控制。 使用两种可互换模型来达到最佳化的必要条件。 第一种配方利用汉密尔顿, 而第二种配方则考虑扩大成本的第一次变异以得出最佳化的必要条件。 Jacobi 椭圆函数显示为各州、 控制和成本计数的封闭形式解决方案的参数。 最佳控制分析显示,它们只能放在一个圆形交叉路段是使时间和能量相对成本受制的重量函数的圆形圆筒上。 第二种配方正在演进的最佳成本表显示位于两个圆筒的交叉点上。 在线性速度受限为时间变化的时空运动中, 也开发了对正在经历点到点运动的轮式移动机器人的最佳控制。 显示, 成本表被限制在圆柱体和极地的交叉点上。 各种点对点调整的数值结果显示, 显示最佳轨迹位置结构的变化。