With the rapid development of artificial intelligence (AI), there is a trend in moving AI applications such as neural machine translation (NMT) from cloud to mobile devices such as smartphones. Constrained by limited hardware resources and battery, the performance of on-device NMT systems is far from satisfactory. Inspired by conditional computation, we propose to improve the performance of on-device NMT systems with dynamic multi-branch layers. Specifically, we design a layer-wise dynamic multi-branch network with only one branch activated during training and inference. As not all branches are activated during training, we propose shared-private reparameterization to ensure sufficient training for each branch. At almost the same computational cost, our method achieves improvements of up to 1.7 BLEU points on the WMT14 English-German translation task and 1.8 BLEU points on the WMT20 Chinese-English translation task over the Transformer model, respectively. Compared with a strong baseline that also uses multiple branches, the proposed method is up to 1.6 times faster with the same number of parameters.


翻译:随着人工智能的迅速发展(AI),出现了将神经机翻译(NMT)等神经机翻译(NMT)等光学应用从云层转移到智能手机等移动装置的趋势。受有限的硬件资源和电池的制约,NMT系统在设备上的表现远不能令人满意。在有条件的计算激励下,我们提议改进具有动态多分层的在设备上安装NMT系统的性能。具体地说,我们设计了一个从层到层的动态多部门网络,在培训和推断期间只有一个分支被激活。由于并非所有分支在培训期间被激活,我们提议对每个分支进行共用的私人重新校准,以确保足够的培训。在几乎相同的计算成本下,我们的方法在WMT14英语-德语翻译任务上实现了高达1.7个BLEU点的改进,在变压器模型中WMT20中英语翻译任务上实现了1.8个BLEU点的改进。与使用多个分支的强基线相比,拟议方法的速度为1.6倍,参数数量相同。

0
下载
关闭预览

相关内容

机器翻译(Machine Translation)涵盖计算语言学和语言工程的所有分支,包含多语言方面。特色论文涵盖理论,描述或计算方面的任何下列主题:双语和多语语料库的编写和使用,计算机辅助语言教学,非罗马字符集的计算含义,连接主义翻译方法,对比语言学等。 官网地址:http://dblp.uni-trier.de/db/journals/mt/
专知会员服务
15+阅读 · 2020年7月27日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
开源星际争霸2多智能体挑战smac
专知
17+阅读 · 2019年2月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Doubly Attentive Transformer Machine Translation
Arxiv
4+阅读 · 2018年7月30日
Arxiv
7+阅读 · 2018年6月1日
Arxiv
3+阅读 · 2018年6月1日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
开源星际争霸2多智能体挑战smac
专知
17+阅读 · 2019年2月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员