Quadratic programming over the (special) orthogonal group encompasses a broad class of optimization problems such as group synchronization, point-set registration, and simultaneous localization and mapping. Such problems are instances of the little noncommutative Grothendieck problem (LNCG), a natural generalization of quadratic combinatorial optimization where, instead of binary decision variables, one optimizes over orthogonal matrices. In this work, we establish an embedding of this class of LNCG problems over the orthogonal group onto a quantum Hamiltonian. This embedding is accomplished by identifying orthogonal matrices with their double cover (Pin and Spin group) elements, which we represent as quantum states. We connect this construction to the theory of free fermions, which provides a physical interpretation of the derived LNCG Hamiltonian as a two-body interacting-fermion model due to the quadratic nature of the problem. Determining extremal states of this Hamiltonian provides an outer approximation to the original problem, analogous to classical relaxations of the problem via semidefinite programming. When optimizing over the special orthogonal group, our quantum relaxation naturally obeys additional, powerful constraints based on the convex hull of rotation matrices. The classical size of this convex-hull representation is exponential in matrix dimension, whereas the quantum representation requires only a linear number of qubits. Finally, to project the relaxed solution into the feasible space, we employ rounding procedures which return orthogonal matrices from appropriate measurements of the quantum state. Through numerical experiments we provide evidence that this quantum relaxation can produce high-quality approximations.
翻译:在(特殊) 或交替组( 特殊) 或交替组的二次编程中, 包含一系列广泛的优化问题, 如组同步、 点定登记、 同步本地化和绘图等。 这些问题是小非混合的 Grothendieck 问题( LNGG) 的自然概括化四边组合优化, 这是一种自然的四边组合优化, 而不是二进制决定变量, 一种优化的交替矩阵。 在这项工作中, 我们将这一类LNCG问题嵌入一个正反交组, 并嵌入一个量级的汉密尔密尔顿小组。 这种嵌入是通过双层( Pin 和 Spin 组) 元素识别或双层矩阵( 双层) 的正向矩阵来完成的正向矩阵。 我们将这种构造与自由交替的理论连接起来, 将这个模型的物理解释成一个双体互动的模型。 确定这个汉密尔密尔顿组的极端状态只能给原始问题提供一种外部的近似的直径近度。 类似于通过半定调调的状态来的问题的状态, 通过半定调的轨道程序来将问题回归的回归。 当度的 。 当优化的, 我们在对特殊或直径直流的直径调的轨的轨道的轨制的轨道的模型的模型的模型的模型的模型的演示中,, 将一个直径流的直径流的基体 向的直径流的基体 。