This paper introduces a novel framework for generative models based on Restricted Kernel Machines (RKMs) with joint multi-view generation and uncorrelated feature learning, called Gen-RKM. To enable joint multi-view generation, this mechanism uses a shared representation of data from various views. Furthermore, the model has a primal and dual formulation to incorporate both kernel-based and (deep convolutional) neural network based models within the same setting. When using neural networks as explicit feature-maps, a novel training procedure is proposed, which jointly learns the features and shared subspace representation. The latent variables are given by the eigen-decomposition of the kernel matrix, where the mutual orthogonality of eigenvectors represent the learned uncorrelated features. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of generated samples on various standard datasets.


翻译:本文介绍了基于限制内核机(RKM)的基因模型的新框架,该模型称为Gen-RKM。为了能够联合进行多视角生成,这一机制使用来自不同观点的数据的共享表述方式。此外,该模型有一个原始和双重的配方,在同一环境中纳入以内核为基础的模型和以(深演进的)神经网络为基础的模型。当使用神经网络作为清晰的特征映射器时,提出了一个新的培训程序,共同学习特征和共享子空间代表形式。潜伏变量来自内核矩阵的易分解,其中机体的相互交替性代表了所学的与非核心特征。实验通过对各种标准数据集的样本进行定性和定量评估,展示了框架的潜力。

0
下载
关闭预览

相关内容

最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月15日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2020年11月22日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月15日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员