The detection of exoplanets with the radial velocity method consists in detecting variations of the stellar velocity caused by an unseen sub-stellar companion. Instrumental errors, irregular time sampling, and different noise sources originating in the intrinsic variability of the star can hinder the interpretation of the data, and even lead to spurious detections. In recent times, work began to emerge in the field of extrasolar planets that use Machine Learning algorithms, some with results that exceed those obtained with the traditional techniques in the field. We seek to explore the scope of the neural networks in the radial velocity method, in particular for exoplanet detection in the presence of correlated noise of stellar origin. In this work, a neural network is proposed to replace the computation of the significance of the signal detected with the radial velocity method and to classify it as of planetary origin or not. The algorithm is trained using synthetic data of systems with and without planetary companions. We injected realistic correlated noise in the simulations, based on previous studies of the behaviour of stellar activity. The performance of the network is compared to the traditional method based on null hypothesis significance testing. The network achieves 28 % fewer false positives. The improvement is observed mainly in the detection of small-amplitude signals associated with low-mass planets. In addition, its execution time is five orders of magnitude faster than the traditional method. The superior performance exhibited by the algorithm has only been tested on simulated radial velocity data so far. Although in principle it should be straightforward to adapt it for use in real time series, its performance has to be tested thoroughly. Future work should permit evaluating its potential for adoption as a valuable tool for exoplanet detection.
翻译:使用辐射速度方法探测外行星的探测包括探测由隐蔽的子恒星伴体造成的恒星速度的变化。 仪器错误、 不规则的时间取样和恒星内在变异产生的不同噪音源会妨碍对数据的解释, 甚至导致虚假的探测。 近些年来, 开始在使用机器学习算法的太阳外行星领域展开工作, 有些工作的结果超过了通过现场传统技术获得的结果。 我们试图探索在辐射速度方法中神经网络的范围, 特别是在存在恒星源相关噪音的情况下, 外行星的直径探测。 在此工作中, 提议建立神经网络, 以取代通过辐射速度方法检测到的信号的重要性的计算, 并将其分类为行星起源或非行星来源。 该算法应使用系统合成数据进行训练。 我们根据对恒星活动行为的先前研究, 在模拟中注入现实化的噪音, 特别是外行星外星测得的外星等值, 其常规性能的性能的性能, 相对于传统性能测算法, 它的性能的性能, 其精确性性能的性能的性能的性能, 主要为测测算, 它的精确性能, 它的性能的性能, 它的性能, 它的性能的性能的性能的性能, 的性能的性能的性能, 它的性能, 的性能的性能, 它的性能的性能, 它的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, 的性能, </s>